自动驾驶尚余1%的难题无法攻克?英伟达:必须建超算中心
卡门精选2022-11-18
自动驾驶行业
在解决了99%的技术难题后,自动驾驶的落地已经来到下半场。解决Corner Case,或许建立超算中心将成为必经之路。

本文来自微信公众号“智驾网”(ID:zhinengqiche),作者:智驾网、黄华丹 ,未来汽车日报经授权发布。

在解决了99%的技术难题后,自动驾驶的落地已经来到下半场。解决Corner Case,或许建立超算中心将成为必经之路。 

日前,英伟达联合IDC(国际数据中心),共同发布了《现实+仿真,超大算力赋能自动驾驶》白皮书。探讨了目前自动驾驶的发展情况以及车企在自动驾驶开发过程中的需求和挑战。 

此处,我们将要点提炼如下: 

1,乘用车市场自动驾驶水平不断提升,普及度增加,今年一季度L2级自动驾驶在乘用车市场的新车渗透率已达23.2%。

2,自动驾驶带动汽车行业向智能化跃迁,车企与科技公司合作促进乘用车自动驾驶水平提升。

3,自动驾驶系统训练需要超大算力,AI超算中心可提供算力支持。

高级别自动驾驶落地的困难让今年的自动驾驶行业趋于冷静。商业化难以实现,撤资、关停,明星公司也可以突然陨落。从外界看来,行业似乎充满了不确定性。 

但另一方面,从业者却正以最大的耐心一步一步缓慢向终点靠近。

技术方面,目前的自动驾驶已经解决了99%的问题,而剩下的1%却需要付出更多的工作。

这似乎已成为共识。终点好像就在眼前,却又遥遥无期。

Corner case,成为自动驾驶落地不得不跨越的下半场路障。

如何翻越?真实数据和仿真测试是训练自动驾驶进一步优化必要的两个路径。而两者,都需要超大算力的支持。

除了介绍自动驾驶市场的现状及对乘用车市场的推动作用,白皮书也介绍了AI超算中心的构建以及英伟达助力企业建立超算中心的平台。

其中,不久前被美国禁止在中国和俄罗斯销售的英伟达A100和H100芯片即为用于超算中心的大算力GPU。

以下,我们来看具体白皮书内容。

自动驾驶发展现状

首先来看自动驾驶目前的发展情况。

报告指出,在乘用车领域,目前自动驾驶技术整体发展良好,处于从L2到L3发展的阶段。

根据IDC《中国自动驾驶汽车市场数据追踪报告》数据,今年一季度L2级自动驾驶在乘用车市场的新车渗透率已达23.2%,而去年同期仅为7.5%。

其中,主流量产合资品牌的L2级自动驾驶已下探至人民币18万级别的车型,部分品牌已下探至10万出头。

报告指出,传统自主品牌在电动化与网联化两大领域均走在市场前列,并与互联网大厂、AI科技公司在自动驾驶领域开展了大量合作。

而造车新势力则已开始提供如“导航驾驶辅助”之类实现起来更加复杂的驾驶辅助功能。并在上市车型中安装支持更高级别自动驾驶的配套硬件,以便在政策放开后,可随时通过OTA在线实现自动驾驶功能的升级。 

此外,根据报告,从L3级开始要求汽车在一定条件下持续执行全部的自动驾驶任务,车辆既需要统筹各传感器收集到的信号,又需要其对驾驶辅助相关的所有功能实现统一调配,由自动驾驶域的主控芯片统一向车辆的线控系统发出指令。车辆电子电气架构向域集中式发展也是自动驾驶发展下必然的趋势。

而在乘用车以外领域,Robotaxi仍处于商业试运行阶段,在矿区、港口、物流园区等封闭场景则已基本实现落地,而商用车领域则已可用辅助驾驶覆盖高速环境,实现半封闭场景下的自动驾驶。

对于汽车产业而言,自动驾驶是行业智能化转型的核心。尤其在乘用车领域,在电动化转型渐趋成熟后,智能化,尤其是智能驾驶方面的发展成为车企突围的主要方向。但开发新的技术并不容易。

根据IDC数据,有40%企业认为科技企业的入局让竞争越加紧迫;技术更新迭代速度快,缺乏成熟的解决方案,导致新产品决策难;以及新老产品难以平衡,内部资源分配难。 

另一方面,对于自动驾驶公司而言,由于自动驾驶研发需要投入大量资金,而L4级别自动驾驶商业化困难,对以发展自动驾驶为主要业务的科技公司来说,维持资金链稳定成为巨大的挑战。

超过半数的科技公司认为研发投入金额大,周期长,资金链压力大。同时,对科技公司来说,汽车行业知识积累不足,与主机厂沟通效率不高。

虽然存在困难,但对双方而言,合作是顺其自然的结果。今年以来,已经有多家L4级别自动驾驶科技公司宣布为主机厂开发L2、L3级别辅助驾驶系统,包括轻舟智航、文远知行、智行者等,其中部分已完成系统的开发,即将在主机厂部分车型实现落地。

自动驾驶系统的前期开发依赖大量道路环境数据的输入,形成贯穿感知、决策、规划、控制多环节的算法。而后依然需要持续不断地输入数据,继续对算法的训练与验证,从而实现迭代。

主机厂与科技公司的合作,一方面解决了双方当下的需求,同时,也可为自动驾驶的发展积累实际道路数据,推动自动驾驶的落地。

自动驾驶系统的训练涉及超大量运算

白皮书指出,利用人工智能手段训练自动驾驶系统,首先需要车辆像人类驾驶员一样快速准确地识别车道、行人、障碍物等驾驶环境中的关键信息。通过在海量数据基础上不断的重复训练与验证,使车辆对道路环境的认知水平逐渐趋近于真实情景,判断的准确性在这一过程中不断提升。

自动驾驶需要机器对环境的判断具备相当高的准确度,所以前期需要输入大量的场景数据。

此外,自动驾驶系统还需要像人类驾驶员一样对环境信息做出回应。这需要机器对同一道路环境中其它交通参与者的运动轨迹做出预判,从而规划合理的行进路线,并及时调整车辆的行进状态。这同样需要大量的训练对系统的预测轨迹进行矫正。

同时,人工智能对人类驾驶员行为的学习是一个持续不断的过程,量产车在上市后会回流海量的数据,用于自动驾驶算法模型的优化。因而训练的规模会随市场中车型存量的上升而不断扩大。

另一方面,由于真实路测信息无法涵盖足够丰富的长尾场景,而且,真实路况下无法实践部分具有危险性的场景,因此,在自动驾驶系统开发前期利用虚拟仿真技术开展仿真测试是更好的选择。

即,将真实世界中的物理场景通过数学建模进行数字化还原,在软件程序所建构的虚拟环境中测试自动驾驶系统。

而且,仿真测试中通过运行虚拟程序产生数据,不仅测试速度远高于物理世界中行驶的车辆,还允许开发团队在组装成本高昂的样车之前即开始测试并验证系统算法。可最大限度提升实车测试的效率。

在仿真测试方面,英伟达基于Omniverse构建了自动驾驶汽车模拟器DRIVE Sim,可大规模地进行物理精准的传感器仿真。开发人员可以在工作站上运行可重复的仿真,然后在数据中心或云端扩展为批量模式。

DRIVE Sim上包括DRIVE Replicator等多个应用。DRIVE Replicator主要提供一系列专注于合成数据生成的功能,用于自动驾驶汽车的训练和算法验证。DRIVE Sim和DRIVE Constellation还支持各个级别的自动驾驶全栈仿真,包括软件在环、硬件在环和其他在环仿真测试(模型、植物、人类,以及更多)。

仿真测试需要场景库基于数据中心大规模重建或回放现实场景,并以平台内部资产的泛化缩小仿真与真实数采之间的差距,以修正虚拟环境中的结果和反馈,从而保证对虚拟世界的构建与现实世界实时互通,因而也需要大算力的支持。

AI超算中心

对算法能力强的公司来说,自建数据中心是顺其自然的选择。一方面可解决安全问题,自有数据中心良好的封闭性可最大程度降低数据资产外溢的风险。同时,长期来看也是成本更低的选择。

IDC的调研也显示,自动驾驶行业的开发团队对这一领域的投资将在未来稳定增长。

数据中心可为训练自动驾驶系统提供巨大的算力,为支撑人工智能计算提供了重要的硬件基础设施,其底层硬件技术路径包括GPU、ASIC、FPGA和NPU。 

其中,ASIC为专用芯片,针对专门的用途而设计。FPGA属于半定制芯片,可通过编程重组电路,在研发与使用两个阶段均可以弥补定制电路灵活性方面的不足。NPU则是专门针对AI和深度学习所设计的芯片。工作原理是在电路层模拟人类神经元和突触,通过存储和计算的一体化提高运行效率。

英伟达可以提供适用于自动驾驶汽车的基础架构,包括开发自动驾驶技术所需的数据中心全套硬件、软件和工作流参考架构,涵盖从原始数据采集到验证的每个环节,为神经网络开发、训练和验证以及仿真测试提供所需的端到端基础模块。

蔚来就在使用NVIDIA HGX构建综合全面的数据中心基础设施,并在此基础上开发AI驱动的软件定义汽车,包括ET7、ET5。包括8个NVIDIA A100 GPU和NVIDIA ConnectX-6 InfiniBand 网卡。

此外,小鹏与阿里云合作在乌兰察布建成了自动驾驶智算中心“扶摇”。而阿里云,同样是A100的大客户。

此前,英伟达A100和H100已被美国商务部禁止向中国出售。不过,11月8日,英伟达已经宣布,将在中国推出一款新的芯片A800作为A100的替代,A800符合美国近期的出口管制规定。

此外,大陆集团也基于NVIDIA DGX AI系统建立了高算力集群,其超级计算机包含超过50套 NVIDIA DGX系统,以NVIDIA Mellanox InfiniBand网络连接,用于加速开发自动驾驶解决方案。同时提供接口与云端资源连接。主要应用场景包括深度学习和仿真测试。

自动驾驶的发展道路注定是漫长的,每一个细节都需要大量的修正。超大算力中心的构建无疑将为大量真实数据的采集与运算,以及仿真场景的建设提供条件。

大量训练是解决自动驾驶Corner Case的必要路径。建立超算中心或许也将成为后期自动驾驶发展的必经之路。

该文观点仅代表作者本人,未来汽车日报系信息发布平台,未来汽车日报仅提供信息存储空间服务。
最新快讯
2025款极氪001和007上市,新增端到端大模型应用
2024-08-20

8月13日,2025款的极氪001和极氪007正式上市。这两款新车官方起售价分别为25.90万元和20.99万元。2025款极氪001与极氪007,搭载了极氪智能科技最新的技术成果。全栈自研的第二代金砖电池,最大充电倍率高达5.5C,从10%充至80%仅需10分半钟,超越了传统三元锂电池。同时,极氪OS智能座舱系统也迎来了全面升级,正式更名为极氪AI OS,Eva进化为AI Eva。在智能驾驶领域,极氪全栈自研的浩瀚智驾系统迈入2.0时代,启动了端到端大模型的应用,优先实现了泊车和路口场景的端到端进化。此外,极氪还率先推出了城市NZP通勤模式,未来将逐步开通城市NZP和城市NZP+,最终实现从车位到车位的全场景城市智能驾驶体验。在智能驾驶方面,2025款极氪001同样带来了升级,首发搭载的浩瀚智驾2.0系统,基于激光雷达和双OrinX智驾芯片的智能硬件方案,实现了系统底层能力和用户体验的全面升级。基于全场景的端到端泊车能力,浩瀚智驾2.0的泊车时间最快可缩短至23秒,且泊车手法更加类人化。同时,该系统还带来了记忆泊车功能,用户只需一次记忆即可实现不限楼层、不限车位的自动泊车服务。

中国超跑首次批量出海,昊铂SSR海外版正式下线
2024-08-02

8月1日,昊铂SSR海外版正式下线,标志着中国超跑可以实现批量出海,树立全球造车科技新高度。超跑,被誉为“汽车工业皇冠上的明珠”,昊铂SSR的量产,不仅实现了打破西方对超跑的技术垄断,同时实现了对外输出超跑的产品、技术、文化和高端品牌的出海,实现了中国汽车工业新的飞跃。昊铂SSR去年10月正式上市以来,以超跑为载体,从研发、设计、试制试验、智造、产业链等,全方位提升中国汽车工业能力,也为中国汽车运动文化注入新力量,促进中国体育文化发展,也推动汽车文化的普及,助力中国从汽车大国迈向汽车强国。昊铂秉持低调务实、保持热诚的作风,征服了全球最顶尖的同行。汽车设计领域的璀璨明星Pontus Fontaeus,因其与法拉利、布加迪和兰博基尼等豪华车品牌的卓越合作而赫赫有名。如今,这位设计巨匠选择与昊铂携手,亲手打造出昊铂SSR这件璀璨的艺术品。伴随着昊铂全球化战略,凝结了中国工业最高技术水准的昊铂SSR,来到了全球用户的面前。去年昊铂SSR海外首秀,在国际舞台上也得到了超跑爱好者的喜爱。在泰国车展,昊铂SSR创下中国汽车出口史上“最高单价”的记录。(未来汽车日报)

40万公里神盾短刀电池健康度达90.5%
2024-07-29

7月29日,吉利对一块历经921次充放电(约40万公里行驶里程)的神盾短刀电池包进行了容量检测,结果显示健康度仍然高达90.5%。而同级产品搭载的电池包,在完成500次充放电之后,健康度就衰减到了80%,寿命远低于神盾短刀电池包。 同时,吉利还对一辆行驶里程超30万公里的银河E5耐久测试车进行了电池包拆解。拆解结果显示电池包的结构依然完整、防护完好。 8月3日,搭载神盾短刀电池的银河E5即将全球上市,并实现上市即交付。(未来汽车日报)

13.58万元起售,宋L DM-i正式上市
2024-07-26

7月25日,比亚迪王朝全新中级SUV宋L DM-i在开封上市,新车基于新技术、新平台、新标准打造,百公里亏电油耗低至3.9L,满油满电综合续航超1500km,以“大宋”之名开创SUV油耗3时代,颠覆用户对中级SUV的油耗续航认知。宋L DM-i此次推出纯电续航里程75KM、112KM和160KM三个版本,共5款车型,售价13.58万-17.58万元。极致低能耗带来超长续航,宋L DM-i满油满电综合续航达1500km,宋L DM-i基于新一代插混整车平台打造,引领中级SUV向更优越驾乘空间和更高级驾乘体验进化。新车长宽高分别为:4780*1898*1670毫米,轴距达2782毫米,比途观L Pro(4735*1842*1682毫米)更长更宽,带来更宽奢的空间体验。纯平后排地板、超宽横向空间,让后排中座成为“C位”,加上宽舒云感座椅,带来前排头等舱、后排大沙发的舒适出行体验。超大后备箱可轻松放下全家行李,更可纯平放倒变身双人床,不管全家购物还是惬意露营,都能轻松满足。(未来汽车日报)

售价14.99万元-21.29万元,深蓝S07正式上市
2024-07-26

7月26日消息,7月25日,深蓝汽车全球战略车型“深蓝S07”正式上市,共推出增程加纯电10款配置车型,售价区间14.99万元-21.29万元,同时全系车型限时优惠1万元,其中215Max增程版、215Max乾崑智驾ADS SE版、215Pro增程版为深蓝S7经典再升级版本。深蓝S07左手深蓝超级增程,右手华为乾崑智能,在20万级中型SUV市场,携20大同级首发、50大同级领先的科技配置,打造同级领先科技含金量。随着的深蓝S07上市,意味着智能驾驶技术步入普及化新阶段,不仅满足了用户的智驾需求,也重新定义了智驾体验的价值感。华为乾崑智驾采用主视觉方案,与特斯拉纯视觉逻辑相同,在决策和规划时更加类人化,行驶轨迹更接近人类驾驶,拥有更高通行效率。但在华为乾崑智驾背后,有华为大数据模型为支撑,这一点与特斯拉纯视觉方案截然不同,实现了对驾驶环境的全方位感知和精准决策。同时,大数据模型还具备强大的学习和迭代能力,能够不断优化算法模型,提升驾驶辅助的精度和安全性。特斯拉在复杂场景下的理解能力和决策精度上,往往难以与华为乾崑智驾相媲美,这也是深蓝S07比肩特斯拉的底气。(未来汽车日报)

查看更多快讯
最新要闻
广汽埃安第二代AION V上市,直指全球市场
售价区间12.98万-18.98万元。
2024-07-26
2024第二届智能座舱车载显示与感知大会
2024年7月12日,由盖世汽车主办的2024第二届智能座舱车载显示与感知大会在上海圆满落幕!论坛为期两天,线上线下同步进行。
2024-07-18
2024汽车数字钥匙技术论坛
​2024年7月10日,盖世汽车2024汽车数字钥匙技术论坛在上海圆满落幕!
2024-07-18
上半年销量突破133.4万辆,长安汽车储备竞争粮草
阿维塔品牌下半年将推出增程产品。
2024-07-10
顶配售价不超20万,零跑C16能否打开新的增长点?
以性价比抢占市场。
2024-07-08
试驾翼真L380:用“大空间”破局
官方指导价37.99万元-47.99万元。
2024-07-05